Numerical solution for a class of parabolic integro-differential equations subject to integral boundary conditions

نویسندگان

چکیده

Abstract Many physical phenomena can be modelled through nonlocal boundary value problems whose conditions involve integral terms. In this work we propose a numerical algorithm, by combining second-order Crank–Nicolson schema for the temporal discretization and Legendre–Chebyshev pseudo-spectral method (LC–PSM) space discretization, to solve class of parabolic integrodifferential equations subject conditions. The approach proposed in paper is based on Galerkin formulation Legendre polynomials. Results stability convergence are established. Numerical tests presented support theoretical results demonstrate accuracy effectiveness

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of positive solution to a class of boundary value problems of fractional differential equations

This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...

متن کامل

‎Numerical solution of nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary ‎conditions‎

The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations with mixed boundary conditions‎. ‎The basic idea is to convert fractional integro-differential equation to a type of second kind Fredholm integral equation‎. ‎Then the obtained Fredholm integral equation will be solved with Nystr"{o}m and Newton-Kantorovitch method‎.  ‎Numerical tests for demo...

متن کامل

Application of the block backward differential formula for numerical solution of Volterra integro-differential equations

In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...

متن کامل

Numerical Solution of Fredholm-volterra Fractional Integro-differential Equations with Nonlocal Boundary Conditions

In this paper, a numerical method is proposed to solve FredholmVolterra fractional integro-differential equation with nonlocal boundary conditions. For this purpose, the Chebyshev wavelets of second kind are used in collocation method. It reduces the given fractional integro-differential equation (FIDE) with nonlocal boundary conditions in a linear system of equations which one can solve easily...

متن کامل

Numerical solution of Fredholm integral-differential equations on unbounded domain

In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arabian Journal of Mathematics

سال: 2022

ISSN: ['2193-5343', '2193-5351']

DOI: https://doi.org/10.1007/s40065-022-00371-3